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Preface

The purpose of this study was to find the solution to

the relative equations of motion for two satellites in

close-elliptical orbits. This was done by performing a

harmonic analysis on the Floquet solution, yielding an

expression for the solution in terms of time and

eccentricity.

The solution was first verified for the circular orbit

case to confirm the accuracy of the computer code. It was

then found for the elliptical orbit case for small

eccentricities.

In finding the solution and writing my thesis, I

received invaluable support from my faculty advisor,

Dr. William Wiesel. Without his guidance this thesis would

have never been completed. Finally, I would like to thank

my wife Laura and daughter Kathryn for their understanding

during all the extra hours that I spent with this thesis at

their expense.

James M. Meintel
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Abstract

The need for a closed form solution for two bodies in

close elliptical orbits is identified. Equations of motion

are derived using Hamilton's equations. Floquet theory, and

its applicability to this problem, is discussed. lfhe

solution for circular orbits is deriveL1 in closed form and

numerically, using Floquet theory and harmonic analysis. (:

A'he solution for elliptical orbits is found numerically

first for very small eccentricities, finding the dependence

on eccentricity. The solution is then found for all time as

a function of eccentricity. / " '.
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RELATIVE MOTION OF TWO SATELLITES IN CLOSE-ELLIPTICAL ORBITS

Introduction

The relative motion of satellites is a problem that has

been widely studied. The results are very important when

one wants to rendezvous or dock two vehicles. Historically,

the first use for a solution was during the Gemini program

when the first docking maneuvers were perfected for use on

the Apollo missions. A complete solution to the problem is

relatively simple for circular orbits; however, elliptical

orbits add a degree of difficulty.

Numerous authors have published the solution to the

problem of two vehicles in circular orbits, including Buning

(1984) and Kaplan (1976). Buning derives the equations of

motion for the elliptical case, but he limits solution to

the circular case. Investigations of the elliptical problem

usually amount to subtracting the position and velocity

vectors of the individual bodies. This method is limited,

however, because of a loss of significant digits during

subtraction. Lancaster (1970) formed a computational method

to calculate the relative position and velocity for

elliptical orbits; however, the results are for single 
%

points in time and are not a solution to the equations of
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motion. It also does not include out of plane motion.

Berreen and Crisp (1976) form a solution for a probe ejected

into an elliptical orbit from a space station in a circular

orbit, but does not address the problem of both bodies being

in elliptical orbits.

The dynamics for this problem can be solved using the

Lagrangian and the Hamiltonian as outlined in Meirovitch

(1970). The resulting equations of motion are linear and

periodic, permitting a Floquet analysis to be done. The

system eigenvectors and the particular solution to the

equations of motion can be expressed as functions of their

Fourier coefficients, as outlined by Brouwer and Clemence

(1961). The results then lead to a complete solution to the

relative equations of motion expressed as an expansion of

the eccentricity.

2
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II. Problem Description

Introduction

This chapter defines the problem, equations of motion,

and describes the theory used to analyze the equations of

motion. The coordinate system is defined as a rotating

rectangular system with its origin centered on body A. The

equations of motion are derived using Lagrange's and

Hamilton's equations. The resulting system is linear and

time-periodic, making Floquet theory applicable in solving

for the homogenous solution to the system. A brief

explanation of the solution for autonomous systems is also

included. In addition, this chapter contains information

relevant to finding repeated eigenvectors, Fourier

coefficients, and a particular solution to the equations of

mot i on.

Equations of Motion

The equations of motion are derived by finding the

Lagrangian and then forming the Hamiltonian for the system

shown in Figure 1. The figure shows two coordinate systems.

The first system has its origin at the center of the

gravitational field, and the polar coordinates R and e

describe the orbit of body A. The vector p is the position

of body B with respect to A.

bPd respe6t
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Figure 1. Physical System and Coordinate System

Both bodies are assumed to be in two-body, unperturbed

orbits. The masses of each body are also assumed to be

negligible, thus any gravitational attraction between bodies

A and B can be ignored.

The second coordinate system is a rotating, rectangular

coordinate system. The origin of the system is at the

center of body A and follows body A along its two-body

orbital path. The x-direction is along the position vector,

R, and the y-direction is perpendicular to the x-direction

in the orbital plane. The z-direction completes the

right-handed system. For this system, as seen from an

observer in body A, the coordinate directions are up,

II
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forward and left. The z-direction is the only coordinate

out of the plane of the orbit.

In order to determine the Lagrangian for the second

particle, the position and the square of the velocity vector

for body B must be found. The position of body B is:

r = (R + x) i + y j + z k (2.1)

The velocity then, including the rotating terms, is:

r CR + x - e y) i + (Y + 6 R + 6 x) j + z k (2.2)

thus,

r 2 2+ y262+ 2 - x y + y'

261 +eX+ 2 R b * + 2 R ,2X + z (2.3)

The gravity potential per unit mass of body B for the

two-body problem is:

2 2 2 -1/2(2)V/m =-/Ir=-t [(R + x)2 + y + z] (2.4)

PL + i+ Y + x- y2 z2 1-1/2

R ~ R R 2  R2 R2

Expanding the denominator and dropping the terms of order

greater than two yields

2 2 2

V/m - I X + x y + (2.5)

R R R2  2R2 2R 2

5
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With the Lagrangian per unit mass

X= T/m - V/rn (2.6)

and the kinetic energy per unit mass

Tim =-(r - r) (2.7)

the resulting Lagrangian is:

At  2  !_ 2 +-ey9 X yRx- Ry-ex +-Iy'
2 2 2 2

+ ' 2+ I i22 +eX'+ Ry+62 R x 2
2 2 2

+a- /a5 x + /I X7 - y 2 _ z (2.8)
RR R3  2R3  2R3

The Hamiltonian for a system is found from the

lba~lfoallowing equation:

H =E p. q. z (2.9)

were the q's are the coordinates as defined before, and the

p's are the conjugate momenta which can be found by

P. = Ox (2.10)
Oq

The resulting momenta are

P x +F y(2.11)

p Y y + 6x + R (2.12)

p z (.3

6



After solving the above equations for the q s and

substituting into Eq (2.9), the resulting Hamiltonian is

H = I p 2+ 1 P2 + 1 P2 _-- + kj qx - q 2R 2 12R1

2 x 2 y 2 z R R 2 x R a

19 2 1 P 2
+ JH qZ +---- q -_Rp +ep q
2 R y 2 R9 q z x px y

- qx p -e R p (2.14)

To find Hamilton's equations of motion for the p's and q's

the following relationships must be used:

q = i (2.15)

OH
p = H_ (2.16)

Substituting the Hamiltonian into these two equations yields

the following system of equations which describe the motion

of body B with respect to body A.

q x p R+eq (2.17)

q P -eq - R (2.18)

-- =(2.20)-z z

and

p = - _ + -'- q + p (2.21)

P =q--- q - e P (2.22)

7



p q 2.23)

Putting these equations into matrix form yields the

following set of equations.

q 0 1 9 0 0 0 q x
2p pA

PX R 0 9 0 0 Px

q - -e 0 0 1 0 0 q + -eR (2.24)

p 0- R 0 0 0 p 0

q z0 0 0 0 0 1 qz 0
•_ p

ipJ 0 0 0 0 R a Pz 0

For the case in which body A is in a circular orbit,

the above reduces to a linear, constant coefficient system.

However, if body A is in an elliptical orbit, R and 9 are

time dependent. Nevertheless, both R and 9 are periodic;

therefore the entire Hamiltonian described above is a

linear, time-periodic system.

Constant Coefficient Systems

For body A in a circular orbit, Eq (2.24) can be

written in the form x = A x + f where A is & constant

matrix, f is a constant vector, and x is a time dependent

vector. As with scalar differential equations, x(t) can be

solved by finding the particular and homogenous solutions

independently and adding the solution

N

2* I~



X = X + Y (2.25)
- -h -p

The easiest of the two solutions is to find x . If x

is assumed to be a constant vector then x = 0 . Thus
-P

Eq (2.24) becomes

0 = A x + f (2.26)

and x is easily obtained.

On the other hand, x h is not so easy to find. The

homogenous differential equation is

d (th) = A x (2.27)

rearranging

- A dt (2.28)

integrating both sides yields

In (x ) = A t + c (2.29)

taking the exponent of both sides

=exp(At + c) = c exp(At) (2.30)

where c is a constant vector related to the initial

conditions.

Although this is not a mathematically rigorous

argument, it does show how the solution is obtained. The

9
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expression exp(At) is similar to the scalar exponential in

that the expansion is

exp(At) = I + At + -- (A t) 2 + 2. (A t)3 + oo (2.31)
- -2! 3!

A, however can be put in the form

A = F J F-1  (2.32)

where F is the matrix of eigenvectors of A in column form,

and J is a diagonal matrix of the eigenvalues of A. J is

said to be in Jordan normal form.

If it is noted that

(F, 1 ) = (FJF 1 )(F F -1 ) F J n F -1  (2.33)

then

exp(At) = I + F (Jt] F-1 + F E- (jt)2 3 1 + F 0- (Jt) -3 F-
21 BI -

= F exp(Jt) F - I  (2.34)

setting i(t) = F exp(Jt) F , the total solution to the

differential equations of motion is

x (t) = (t) c + x (2.35)

Therefore, finding the solution to the equations of

motion for the case where body A is in a circular orbit can

be done by finding the eigenvalues and eigenvectors and

solving Eq (2.26).

10
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FloQuet Analysis

The solution for a constant coefficient system has been

well studied and yields relatively simple results. The

system for this problem, however, is one of time-periodic

coefficients. The solution for this type of problem was

discovered by Floquet in the latter part of the 1800's. The

most common uses for Floquet theory is to find the stability

of time-periodic systems in celestial dynamics. Few

studies, however, deal with finding a solution to the

equations of motion.

If we start with the system of time-periodic

differential equations

A(t) x (2.36)

where x is the state vector, x is the time derivative of the

state vector, A(t) is a periodic matrix with period T. The

numerical solution to this problem is only slightly more

difficult than the one for constant coefficients in A;

however, the process is different so a discussion of the

procedure is included.

Since we have a linear system, its solution can be

described as

x(t) = (tO) c(t ) (2.37)

11
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where the state transition matrix, t, has the initial

conditions

i (t,O) = A(t) i (t,O) (2.38)

i (0,0) = I (2.39)

where I is the identity matrix.

Floquet theory shows that i can be factored into two

matrices F and J, such that

S (t,O) = F (t) exp(Jt) F-'(0) (2.40)

The matrix J is a constant matrix most conveniently put in

Jordan normal form. The diagonal entries of J are the

Poincar6 exponents which are related to the system

eigenvalues. The matrix F is a time periodic matrix with

the same period, T, as the original system.

For the constant coefficient system, F would just be

the eigenvectors of A. The only difference between the

constant coefficient system and the periodic system is that

F is periodic in the latter case. Therefore, solving the

Floquet problem requires finding the constant matrix J and

the periodic matrix F over a single period.

The first step in the Floquet analysis is to find

(T,O). This is called the monodromy matrix. The monodromy

matrix is usually found by numerically integrating

(t,O) = A(t) -5(tO) (2.41)

12



over one period. Having 5(T,O) and knowing F(T) = F(O)

results in

t(T,O) = F(O) exp(Jt) F-1 (0) (2.42)

which can be written as

exp(Jt) = F-1 (O) 5(T,O) F(O) (2.43)

This shows that F(O) is the matrix of eigenvectors for

5(T,0).

Also, if X. are the eigenvalues of the matrix 5(T,O).

The Poincar6 exponents, w,, are related to the eigenvalues

by the following relationship

X X. = exp(w.T) (2.44)

Where the c. are the diagonal elements of J, or
L

w = (l/T) In (k.) (2.45)

L 1,

The stability information for the system is now

present. If any of the Poincar6 exponents have positive

real parts, the system is unstable. Since the stability

information is all that is usually needed, this is where

most Floquet analyses stop. For this study, however, the

solution to the equations of motion are desired; therefore,

the analysis must continue.

In order to find the complete solution, F(t) must be

found. Since it is periodic, F(t) is only needed over the

13
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first period. By substituting Eq (2.38) into Eq (2.37) and

rearranging

F(t) = A(t) F(t) - F(t) J (2.46)

where the initial conditions for the equation is just the

matrix of eigenvectors. So by integrating this equation

over one period the total solution can be found.

The first problem that arises is that F(t) and J can be

complex, making any real analysis quite difficult. They

can, however, be arranged such that both are completely

real. F should be arranged in column vectors, f+, if the
- L

eigenvector is completely real, then f will simply be the

eigenvector. On the other hand, if there is a pair of

Acomplex eigenvectors (they always appear in conjugate

pairs), then the columns will be f and f

The matrix J will no longer be in Jordan normal form,

but will be in block diagonal form. Real w 's will remain

the diagonal elements of 3, but the complex pairs of w 's

will be appear in the following diagonal blocks:

Re(w) Im(W) 1

-Im(W) Re(w) (

The matrix exp(Jt) is then replace by the diagonal

entries exp(ot) for the real w , and the diagonal blocks
I-

14



exp(wt) [ c (2.48)
sin(Im(w )t) Cos (Im (W. t)

L J

for complex conjugate pairs.

In this problem, it will also be necessary to find

F-1(t) over one period. F(t) is always invertable; however,

an easier method for finding F-1 (t) exists. If the identity

FF -1 = I is differentiated with respect to time and

subsituted from Eq (2.46), the result is

F-C(t) - - F(t) A(t) + 3 F-'(t) (2.49)

Since the problem that is being dealt with is periodic,

there will be a pair of repeated eigenvectors along the

velocity vector of the two body orbit (Wiesel, 1981). Since

the columns of F must be independent, another eigenvector

must be found. If X is the vector of p and q. of the two

body orbit, then the repeated eigenvector, £ will be

dX

dt (2.50)

and the extended eigenvector 2 will be

dX

- dE (2.51)

where E is the energy of the orbit.

Now that F(O) and J can be formed, Eq (2.46) can now be

integrated. By using harmonic analysis, as outlined in

Brouwer and Clemence, one can find a closed form expression

15
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for the elements of F. Since F is periodic it can be

expressed as

F(i,j) = -c + c cos t + c cos 2t + -- " + - c cos nt
2 0 2 2 n

+ s sin t + s sin 2t + - + s sin nt (2.52)1 2

where

n-

j=O

2n-1SnI F(ja) sin kict, k = 0,1,2,---,n - 1 (2.54)
S n n

3=1

and

a = 2n/2n (2.55)

Therefore, numerically finding n values of F, spaced over

equal intervals of time, yields a complete solution for F.

Therefore, a complete homogenous solution has been found.

Particular Solution

In order to find the complete solution to the problem a

particular solution, in addition the homogenous solution,

must be found. Eq (2.24) is in the form

x = A x + f(t) (2.56)

Now, introducing the modal variables, y, as

16



= F - (t) x(2.57)

then

= F1 (t) x + F (t) ( (2.58)

substituting Eq (2.57) into Eq(2.58) yields

=-F- (t)A(t)x + JF-I (t)x + F-1 (t)A(t)x + F- (t)f(t) (2.59)

Substituting Eq (2.57) into Eq (2.59) and simplifying

results in

-1X Y+F(t) f (t) (2.60)

The term, F-I(t) f(t), is periodic; therefore, it can be

VW integrated over one period to find the Fourier coefficients

as was shown for F(t). The solution for x can then be

easily integrated by hand since it is just a series of sines

and cosines.

Conclusion

The geometry of the problem and the equations have been

shown. A brief overview of the methodology for solving the

equations of motion was then presented. The following

chapters will utilize the procedures discussed in order to

find the solution to the problem of relative motion of two

satellites in neighboring elliptical orbits.

17

-A -A L



VV V1, --R1#v lw wrv . [. vvW. W - j-z

III. Circular Solution

Introduction

This chapter will deal exclusively with the solution

for the problem with body A being in a circular orbit. It

will first be solved as an autonomous system, and then the

results will be compared with the solution obtained by using

a Floquet analysis as outlined in the previous chapter.

Autonomous Solution

The elements of the A matrix, R, and e, for the

circular solution will all be constant. Using canonical

variables, R, /, and e will all be identically equal to one.

The resulting equations of motion will be

0 1 1 0 0 0 0

2 0 0 1 0 0 -1

-1 0 0 1 0 0 -1-10 100 x + -1(3.1)

0 -1 -1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 -1 0 J0

The first step in finding the exact solution to the

circular case is to find the homogenous solution for

Eq (3.1). As shown in the previous chapter, this is done by

finding the eigenvalues and eigenvectors of the A matrix.

18



The eigenvalues are found by the equation

det(X I - A) = 0 (3.2)

The resulting characteristic equation is

X4 + X2 = 0 (3.3)

Therefore, the eigenvalues are

X =0 (3.4)
1,2

and

X + i (3.5)
9,4 -

X = i (3.6)
5,6

The eigenvectors are then found by the equation

(X I-A) ( = 0 (3.7)

For X the resulting eigenvector is
£

= (0,1, -1, 0, 0, 0)T (3.8)

However, there is no independent eigenvector cooresponding

to X 2 This vector, termed the generalized vector, can by2

found using the expression (Reid 1983)

(A - X 1) C , (3.9)

19
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This yields

= ( , v-1,- 0, 0) T (3.10)

The other four eigenvectors occur in complex conjugate

pairs. As in the Floquet analysis outlined in chapter 2,

the eigenvectors can be broken up into their real and

imaginary parts, and J can be put into blocks of sines and

cosines.

The pairs of eigenvectors are

~i if - i 0O O) T  (. 1= ( . i, - -,1 0,0) 3.1
Cs 2 2 2

= C 0, 0, 0, 0, 1, i)T (3.12)

Therefore, the following can be written

0 2/3 0 -1/2 0 0

1 1 -1/2 0 0 0

F -1 -1 1 0 0 0

0 -1/3 0 1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-3 2 1 -3 0 0

3 0 0 3 0 0

F - 0 2 2 0 0 0 (3.14)
2 0 0 4 0 0

0 0 0 0 1 0

0 0 0 0 0 1

20
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1 t 0 0 0 0

0 1 0 0 0 0

0 0 cos t sin t 0 0exp(Jt) = (.5

0 0 -sin t cos t 0 0

0 0 0 0 cos t sin t

0 o 0 0 -sin t cos t

Multiplying matrices

0 2/3 -sin t - I-- cos t 0 0
2 2

1 t + 1 - - cos t - - sin t 0 0
2 2

F exp(Jt) 1 - t - 1 cos t sin t 0 0

0 -1/3 - - sin t - - cos t 0 0
2 2

0 0 0 0 cos t sin t

0 0 0 0 -sin t cos t

(3.16)

and

5(t,O) = F exp(Jt) F- =

2-cos t sin t sin t 2-2cos t 0 0

3t-sin t 2-cos t 1-cos t 3t-2sin t 0 0

-3t+2sin t -2+2cos t -1+2cos t -3t+4sin t 0 0

-1+cos t -sin t -sin t -1+2cos t 0 0

0 0 0 0 cos t sin t

0 0 0 0 -sin t cos t

(3.17)

So the above matrix is the t matrix and is the solution to

the homogenous set of equations.

Finding the particular solution requires finding the

solution to the following matrix equations

21



0 1 1 0 0 0 0

2 0 0 1 0 0 1

-1 0 0 1 0 0 1

0 -1 -1 0 0 0 P 0

00000 1 0

0 0 0 0 -1 0 J0

Resulting in

x 0, 1, -1, 1, 0, 0)T (3.19)
-p

Putting the homogeneous and particular solutions

together yields an equation in the following form.

x(t) = 5(t,t) c(t o ) + x (3.20)

Therefore, the next step in finding the total solution is to

find the constant vector c(t . Evaluating Eq (3.20) at

time equal to zero results in

x(0) = (0,0) c(0) + x (3.21)
-P

Since j(0,0) is the identity matrix

c(O) = x(O) - x (3.22)

Recalling Eqs (2.11), (2.12) and (2.13) for body A in a

circular orbit yields the following
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x -y

x(t) = (3.23)
y + x +1

z

z

Evaluating for time equal to zero and substituting into

Eq (3.22) yields.

x
0

x -Y - 1o 0

y +x1

C(O) 0 (o
+  3.24)

YO + 
xo0

Zo 0

z.
0

Multiplying out Eq (3.20) with the given results for

t(t,O), c(O), and x directly yield the following equations

for the position of body B with respect to A in the original

coordinate system referred to in Figure 1.

x(t) = 4 x 3 x + 2 yo) cos t + x sin t + 2 y (3.25)

y(t) = ( 6 x + 4 y ) sin t + 2 x cos t

- x 8 + 3 yO ) t - 2 xo + y0  (3.26)

z(t) = z cos t + z sin t (3.27)
0 0
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0The equations of motion that have been derived do not
directly give equations for the velocities, or dot terms.

Eq (3.20) gives the equations for the momenta terms, and the

velocity equations can then be found. The equations for the

momenta are

p (t) =x(t) - y(t)
X

= - ( 3 x + 2 y ) sin t - x cos to 0

+ (6 x + 3 y ) t + 2 x- YO (3.28)

p (t) = y + x +1
y

= - x sin t + ( 3 x + 2 yo) cos t

-2 x y + 1 (3.29)

L p (t) = z(t) - z sin t + z cos t (3.30)

Therefore, the solutions for the velocity components are

(t) = 3 x + 2 y + x cos t (3.31)o 0

y(t) = - 2x sin t + (6x + 4y ) cos t - 6x - 3y (3.32)

z(t) = - z sin t + z cos t (3.33)
o 0

These equations are the same as derived in Kaplan.

Kaplan, however, derived the equations using Newtonian

mechanics, whereas the derivation here is using Hamilton's

equations.
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Circular Solution Usinq Floquet Theory

The exact solution derived above should yield the same

results as Floquet theory. Briefly, Floquet theory consists

of the following steps

1. The 5 matrix will be integrated over one period.

2. The F and J matrices will be found at time equal to

zero using the eigenvectors and Poincar6 exponents

evaluated from i at one period.

3. F will be integrated over one orbit. Since it is

periodic, the results are valid for all time.

4. The fourier coefficients for the individual terms

in F are found.

5. The solution for the I matrix for all time is now

available and the solution can be found using the

initial conditions the same as was done for the

Hamiltonian derivation.

Integrating 5 over one period yields the following

matrix

1.000000 0.000000 0.000000 0.000000 0.000000 0.000000

18.849556 1.000000 0.000000 18.849556 0.000000 0.000000

-18.849556 0.000000 1.000000-18.849556 0.000000 0.000000

0.000000 0.000000 0.000000 1.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 1.oooooo 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 1.000000
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Finding the eigenvalues for this matrix is not

extremely difficult, X are all one. Finding the
1-6

appropriate eigenvectors is not quite so easy. The first

problem that arises is the that IMSL subroutine eigrf can

not handle the problem. Due to the six repeated

eigenvalues, IMSL only finds three independent eigenvectors.

One is a vector along the velocity of body A as expected,

and the other two that it finds are for the out of plane

motion. They are

( 0, 1, -1, 0, 0, 0) T

(0, 0, 0, 0, 1, 0)1T

0, O, O, 0, 0, 1) T

It has already been shown that one of the eigenvectors

will be

dX

-dE (3.34)

where E is the energy of the orbit and X is the position

vector of body A with respect the center of the Earth

evaluated at time equal to zero or any integer multiple of

the period. The vector X, in the coordinates being used, is

X = RO 0, 0, v , 0, 0) (3.35)

where v is the linear velocity of body A. Therefore, the

eigenvector will be

26
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dR dv

=, , 0 , , 0, 0) (3.36)

First R and v must be found as a function of E.
0 0

Starting with

E = (v / 2) - ( / R) (3.35)
0 0

and

v = ( / R) (3.36)o o

Substituting Eq (3.36) into Eq (3.35) yields

R =- (3.37)
o 2E

also

v = (-2E 1 /2  (3.38)
0

Taking the derivative of Eqs (3.37) and (3.38) with respect

to E yields the eigenvector

= ( /__,_, - 2E-1
/ 2 T

0, 0, 2 E) , 0, 0) (3.39)
2E

Since canonical units are being used, a = I , p = I ,

and E = -1/2 . Therefore,

= ( 2, 0, 0, -1, 0, 0) (3.40)

Four of the eigenvectors have now been found; however,

two more are still needed. Finding them by hand turns out

to be fairly simple due to the number of zeros present in .
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0= ( , 1, 0, 0, 0, 0) (3.41)

= ( 1, 0, 0, -1, 0, 0)T (3.42)

Putting all the eigenvectors together gives the following

0 2 0 1 0 0

1 0 1 0 0 0

-1 0 0 0 0 0 (343)F(O) = (.3

0 -1 0 -1 0 0

0 0 0 0 1 0

L0 0 0 0 0 1J

also

0 0 -1/3 0 0 0

1 0 0 1 0 0

V F-A (0)= 0 1 1 0 0 0 (3.44)
-1 0 0 -2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Since all the eigenvalues are equal to one, all the

Poincar6 exponents are zero. This means that the J matrix

will be zero, except an off diagonal one due to the

generalized eigenvector (r). Therefore,
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0X- 10 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

a = (3.45)
0 0 0 0 0 0

0 0 0 0 0 0

L0 0 0 0 0 0J

and

I t 0 0 0 0

0 1 0 0 0 0

exp(Jt) 0 0 1 0 0 0 (3.46)
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1J

Now everything has been found that is needed to find

F(t). With F(O) as the initial conditions, F was integrated

over one orbit. It turned out, however, that the chosen

eigenvectors were not periodic. Instead of returning to

their original values, the following matrix resulted

0 2 0 1 0 0

1 12.6 1 0 0 0

-1 -12.6 0 0 0 0 (347)" ~F(T) = (.7

0 -1 0 -1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Since F(O) * F(T), this is not a periodic combination

of eigenvectors. However, due to the fact that all the

Poincar6 exponents are zero, any linear combination of the
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eigenvectors is still an eigenvector. Therefore, some

linear combination of the first two eigenvectors must be

found to make the set of eigenvectors a periodic one.

Evaluating the time derivative of F at zero results in

the following

0 0 1 0 0 0

0 2 0 1 0 0

F(O) = A F(O) - F(O) J = 0 -2 0 -2 0 0 (3.48)

0 0 -1 0 0 0

0 0 0 0 0 1

0 0 0 0 -1 0

What was done to solve this problem was to find a set

of eigenvectors that make the time derivatives of the second

and third row of the second column equal to zero at time

equal to zero.

The first thing that was attempted was to add a

multiple of C to C2 If

0 2 0 1 0 0

1 1 0 0 0

-1 - 0 000 03Q
F(O) = (3.50)

0 -1 0 -1 0 0

0 0 0 0 1 0

L0 0 0 0 0 1J

then
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0 0 10 0 0 0 0 0 0

0 3 0 1 0 0 0 1 0 0 0 0

A F(O) - F(O)J 0 -3 0 -2 0 0 0 -1 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0

0 0-1 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0

(3.51)

Adding the two matrices in this manner did not have the

desired affect. The next thing that was tried was to just

have a multiple of . The eigenvalue matrix at zero will

be

0 2 0 1 0 0

-a 0 1 0 0 0

F(O) - (3.52)0 -1 0 -1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

and

0 0 1 0 0 0 0 0 0 0 0 0

0 3 0 1 0 0 0 a 0 0 0 0

AF(0) F(0)J- 0 -3 0 -2 0 0 0 -a 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0

(3.53)

It is easy to see that if a = 3 , then F(O) will be zero

in the desired positions.
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The eigenvector matrix

0 2 0 1 0 0

3 0 1 0 0 0

-3 0 0 0 0 0 (354)F(O) = (.4

0 -1 0 -1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

and

0 0 0 -1/3 0 0

1 0 0 1 0 0

F -I (0)- 0 1 1 0 0 0 (3.55)
-1 0 0 -2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

was integrated around one orbit and was periodic.

The next step was to find the Fourier coefficients as

described in Chapter 2. The results of the harmonic

analysis showed that each element of the F matrix could then

be expressed as a function of time in the following manner

0 2 sin t cos t 0 0

3 0 2-cos t sin t 0 0

F(t) -3 0 -2+2cos t -2sin t 0 0 (356)
0 -1 -sin t -cos t 0 0

0 0 0 0 cos t sin t

0 0 0 0 -sin t cos t
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Note that these numbers are really accurate to ten

significant digits. The trailing zeros were left off to

make the matrices easier to read.

1 t 0 0 0 0

0 1 0 0 0 0

expo(J) 0 0 1 0 0 0 (3.57)

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Therefore, to find t(t)

0 2 sin t cos t 0 0

3 3t 2-cos t sin t 0 0

F(t) exp(Jt) = -3t -2+2cos t -2sin t 0 0

0 -1 -sin t -cos t 0 0

0 0 0 0 cos t sin t

0 0 0 0 -sin t cos t

(3.58)

Recalling that

0 0 -1/3 0 0 0

1 0 0 1 0 0

F -I (O )  0 1 1 0 0 0 (3.59)
-1 0 0 -2 0 0

0 0 0 0 1 0

0 0 0 0 0 1
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t(t,O) = F(t) exp(Jt) F - 1 (0) =

2-cos t sin t sin t 2-2cos t 0 0

3t-sin t 2-cos t 1-cos t 3t-2sin t 0 0

-3t+2sin t -2+2cos t -1+2cos t -3t+4sin t 0 0

-1+cos t -sin t -sin t -1+2cos t 0 0

0 0 0 0 cos t sin t

0 0 0 0 -sin t cos t

(3.60)

As expected, this t(t,O) is identical (within ten

significant digits) to the one for the exact solution. From

here on the total solution can be found from Eq (3.20) in

the same manner as the exact solution. Due to redundancy

this will not be shown. However, the total solution will

result in the same solution because 5(t,O) is the same for

Vboth approaches.

Conclusion

The solution to the equations of motion for the

circular case are not new. The main purpose for finding

this solution was to help verify the computer programs that

were used. Since the two solutions are identical,'it shows

that the numerical approach that was used was correct for

the case of a circular orbit.
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IV. Ellip~tical Solution

Introduction

The procedure for finding a numerical solution to the

elliptical problem is identical to finding the numerical

solution for the circular case. The goal, however, is to

find the relative motion solution as a function of

eccentricity. This will be done by finding the solution for

slightly eccentric orbits. For very small eccentricities

(i e. e = 10-7  ) only the linear terms of e will appear.

After finding the dependence on e, larger values for the

eccentricities will be used to find the equations'

2 3dependence on e and e

Homogenous Solution to the Equations of Motion

t (T,O) is found in the same manner as for the circular

case. j= A 5 is numerically integrated over one period.

For all eccentricities, 5t(T,O) appears in the following form

Vt.~



1 0 0 0 0 0

A 1 0 B 0 0

5t(T,0) = C 0 1 D 0 0 (4.1)
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Where A,B,C,D are some value.

The eigenvalues, as in the circular case, are all of

magnitude equal to one; therefore, all of the Poincar6

exponents are zero.

As with the circular case, IMSL cannot find distinct

eigenvectors to the matrix; however, it is not too difficult

to find the eigenvectors by hand due to the abundance of

~zeros in the matrix.

0 0 0 0 0 0

A 0 0 B 0 0

(X I - A) C (4.2)
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Four of the eigenvectors are easy to determine. They are

a= (0, 1, 0, 0, 0, 0) T (43

a= (1, 0, 0, -A/B, 0, 0) T  (4.4)

= (0, 0, 0, 0, 1, 0) T  (4.5)

=. . 0, 0, 0, 0, 0, 1) T  (4.6).
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and, as shown in Chapter 2, there is a repeated eigenvector

and its corresponding extended eigenvector. Recalling

dX - (4.7)

and

dX

= - dE (4.8)

the last two eigenvectors can be found. The repeated vector

will be

( 0, I/R , vo, 0, 0, 0) (4.9)

Where the zero subscript denotes time equal to zero. Using

canonical units

u/R2 = I/(1-e)2  (4.10)

From Kaplan (1976)

e = (R v2 / )-1 (4.11)
0 0

Which leads to

v = [(/R ) (e + 1)]1 2 (4.12)0 0

thus

v = [(e + 1)/(e - 1)] ]1 2  (4. 13)
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Now only the second eigenvector needs to be found.

Recalling Eq (3.35)

E = (v0 / 2) - ( j / R ) (4.14)o 0

Substituting for v and solving for R results in
0 0

R = (e - 1)/2E (4.15)
0

thus

dR /dE e (4.16)
0 2 E2

However, for canonical units the semimajor axis, a, will be

equal to one, and E = -1/2 . Thus,

dR /dE = 2 (1 - e) (4.17)o0

Now, in order to find dv /dE, start with0

v = E(P/R ) (e + 1)]1 /2  (4.18)

Using the chain rule

dv /dE = (6v /6R ) (6R /dE)
0 0 0 0

= - (1/4) [(1 + e)/R 31 / 2 (1 - e) / 2E2  (4.19)
0

simplifying,

dv /dE = - (1 + e)/(1 - e) 31'2  (4.20)
0
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Since the eigenvectors have all been found, the matrix

F(O) will be

0 2(1-e) 0 1 0 0

1 0 1 0 0 0

(1-e) 
2

F(O) = [.:] 0 (4.21)
W£ e2

0oe o -A/B 0 0

0 0 0 0 1 0

0 0 0 0 0 1

The next step is to integrate F over one period. This

was done to the matrix above and, as in the circular case,

it was not periodic. The method for making F periodic for

the circular solution was to make the second column of the

second and third rows of F equal to zero by using a multiple

of the first eigenvalue. However, there is no constant that

will make this happen. Nevertheless, if the first

eigenvector is multiplied by three as before, then

0 2(1-e) 0 1 0 0

0 1 0 0 0

(l-e) 2

3rI +e 1., 2  
0 0 0 0

F(O) [I-] (4.22)
[L 1/12

o [ -e  0 -A/B 0 0

0 0 0 0 1 0

0 0 0 0 0 1
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iBu ,

F(3,2) = 0 (4.23)

and

F(2,2) = - e/(1 - e) (4.34)

For the case where e = 0 , Eq (4.34) reduces to zero.

This method was tried and resulted in a periodic

function for F(t). Fifty values of F were saved along equal

increments of time during one period and the Fourier

coefficients were found as discussed in Chapter 2.

Table 4.1 lists the eccentricities and the calculated

values for the Fourier coefficients of the first column of

the first row of F(t).

Table 4.1
Fourier coefficients for F(1,1)

e s s s
£ I 2 3

.0000001 -. 000000300 * *

.0000010 -.000003000 * *

.0000100 -.000030000 * *

.0001000 -.000300000 * *

.0005000 -.001500000 -. 000000750 *

.0008000 -. 002399999 -.000001920 -.000000002

.0010000 -.002999999 -.000003000 -.000000003

.0050000 -. 014999859 -.000074999 -.000000422

.0080000 -.023999424 -.000191992 -.000001728

.0100000 -. 029998874 -.000299980 -.000003375

.0200000 -. 059990999 -.001199680 -.000026990

.0300000 -. 089969627 -.002698380 -.000091048

s = -3e + 1.125e
2

s = -3e
2

2

s = -3.375e3

where the stars indicate zero to nine significant digits.
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For e = 10- , one can see the linear dependence on

e. As the eccentricity increases, the square and cubic are

no longer negligible and can be extracted from the data.

The resulting equation for F(1,1) as a function of both

eccentricity and time is

F(1,1) = (-3e + 1.125e2 ) sin t - 3e2 sin 2t (4.35)

- 3.375e3 sin 3t

The rest of the data to determine the coefficients for

the other elements of F(t) is in Appendix B. The resulting

equations for the rest of the elements of F are as follows:

F(1,2) = 2 + e2 + E-2e + (3/4)e ] cos t - e cos 2t

- (3/4)e3 cos 3t

F(1,3) = [1 - 2e + (5/8)e2 + .75e3 3 sin t

+ [e - 2e 2 + (1/3)e J] sin 2t

+ E(9/8)e2 - 2.25e3 ] sin 3t + (4/3)e' sin 4t

F(1,4) = - e + (1 - (9/8)e ] cos t + [e - (4/3)e ) cos 2t

+ (9/8)e2 cos 3t - (4/3) cos 4t

F(1,5) = F(1,b) = 0

F(2,1)"= 3 + 1.5e + (6e + 2.25e ) cos t

+ 7.5e2 cos 2t + 9.75ev cos 3t

F(2,2) = (-e + .38e3 ) sin t - e sin 2t - (9/8)e sin 3t
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F(2,3) = 2 - 2.5e + e2 - .87ea + (-l + 4e + 3.875e
2

- 1.5e3 ) cos t + (-1.5e + 5e2 + 4.16ea) cos 2t

- (2.12e2 + 5.8e3 ) cos 3t + 3eD cos 4t

F(2,4) = [1 - (3/8)e ] sin t + (1.5e - e ) sin 2t

+ 2.215e2 sin 3t - 2.96ea sin 4t

F(2,5) = F(2,6) = 0

F(3,1) = -3 + 1.5e2 + (-3e + 1.875e) cos t - 3e 2 cos 2t

- 3.375e3 cos 3t

F(3,2) = 0

F(3,3) = -2 + .5e + e - .25ea + (2 - 2e -. 5e + 1.244e a

cos t + (1.5e - 2e 2 - .4ea) cos 2t

+ (1.5e2 - 2.25e3) cos 3t

F(3,4) = (-2 + .5e2) sin t + (-1.5e + 1.08es) sin 2t

- 1.5e sin 3t - (5/3)e sin 4t

F(3,5) = F(3,6) = F(4,1) = 0

F(4,2) = -1 + .5e + [-e + (5/8)e33 cos t - ez cos 2t

+ (9/8)e3 cos 3t

F(4,3) = [-I + (7/8)e2 sin t + [-e + (7/6)e ] sin 2t

- (9/8)e2 sin 3t + (4 .3 )ea sin 4t

F(4,4) = [-1 - (3/8)e2 ) cos t + [-e - (1/6)e sJ cos 2t

- (9/8)e2 cos 3t - (4/3)e cos 4t

F(4,5) = F(4,6) = F(5,1) = F(5,2) = F(5,3) = F(5,4) = 0
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F(5,5) = -1.5e - 1.5e2 - 1.5e3 + (1 + e + (5/8)e2 + (5/8)es ]

cos t + (.5e+ .5e2 + .168e 3 ) cos 2t

+ [(3/8)e 2 + (3/8)ea ]I cos 3t + (1/3)e3 cos 4t

F(5,6) = El - e - (1/8)e z + (1/8)e 3 ] sin t + (.5e - .5e2

-. 165e3) sin 2t + E(3/8)e 2 
- (3/8)e3 3 sin 3t

+ (1/3)e 3 sin 4t

F(6,1) = F(6,2) = F(6,3) = F(6,4) = 0

F(6,5) = E-1 - e - (5/8)e2 - (5/8)e3] sin t
23

+ [-e-e -(1/3)e 3 sin 2t

+ (-1.125e - 1.125e3 ) sin 3t - 1.35e 3 sin 4t

F(6,6) = 1 - e - (1/8)e + (1/8)e a + [e - e - (1/3)e ]cos t
2 3 3

+ (9/8)e + (9/8)e ] cos 3t + (4/3)e cos 4t

(4.36)

Since F(t) has been found, finding P(t,O) is now

relatively simple. As in the circular solution

1 t 0 0 0 0

0 1 0 0 0 0

expo(J) 0 0 1 0 0 0 (4.37)

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Finding the solution for F-1 (0) is tedious, but

relatively simple. It will be a matrix in the form
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0 0 1/b 0 0 0

(1-f) /c 1 0 -g/c 0 0

F-I (t) = 0 1 -a/b 0 0 0 (4.38)
f 0 0 g 0 0

0 0 0 0 1 0

0 0 0 0 0 1

where

a = 3/(1 - e) 2

b = - 3 [(1 + e)/(1 - e)I 3

c = 2 (1 - e)

d - (1 + e)/(I - e)]1 / 2

e = - A/B (from Eq (4.1))

f = -d/(ec - d)

g = c/(ec - d) (4.39)

The total solution for (t,O) can now be expressed in terms

of eccentricity cubed by the following matrix multiplication

j(t,O) = F(t) exp(Jt) F- (O) (4.40)

Combining Eqs (4.36), (4.37), and (4.38) the homogenous

solution for x = ACt) x is now determined as an expansion

of eccentricity in Eq (4.40).
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Particular solution

The complete solution for the relative motion is almost

complete. All that is needed is the particular solution.

Recalling Eq (2.59)

-= x + F (t) f(t) (4.41)

Since F 1 (t) f(t) is periodic it was integrated and the

Fourier coefficients were found as done for F(t). The

solution for X is then easy to integrate by hand and results

in the following:

y(I) = K + K + [-1 + (2/3)e - (1/3)e2 + .5e 3 ] t1 2

+ [(4/3) - (8/3) + (7/6)e2 + (1/3)e 3 3 sin t

+ Ce - (11/6)e 2 + .4125e9] sin 2t

+ [(9.43)e2 -1.5e s ] sin 3t + e3 sin 4t

X(2) = K 2

x(3) = Ka + (-e - .75e2 ) t + (-2 - 1.75e') sin t3

+ [-(3/2)e - (2/3)e3 ] sin 2t - (17/12)e2 sin 3t

- 1.48e 3 sin 4t

x(4) = K (2 - 2.75e 2 ) cos t - [(3/2)e - 2.4125e3) cos 2t

- (17/12)e cos 3t - 1.48e cos 4t

X(5) = x(6) = 0 (4. 42)

Since the particular solution can be any function that

satisfies the differential equation, any initial value for
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will be valid; however, > (O) = 0 leads to easier expressions.

This can be done by setting K = 0 and
'-3

K = 2 + (3/2)e + (4/3)ez + 0.9325ea (4.43)

Now x(t) has been found, the particular solution is

x = F(t) x(t) (4.44)

where F(t) is expressed in Eq (4.36) and X(t) in Eq(4.42)

Complete solution

Recalling Eq (2.35),

x(t) = t(t,O) c + xP (4.45)

however, since X(0) =0

c=x (4.46)-0

and Eq (4.45) can be written

x(t) = 0(t,O) x + x (4.47)

where (t,O) is expressed in Eq (4.40), x in Eq (3.23), and

x in Eq (4.44)
p
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Conclusion

Using the expressions derived in this chapter, the

solution to the equations of motion can be expressed as a

function of eccentricity and time. The results reduce to

the circular solution, but the actual equations for the

elliptical solution are rather complicated to write out in

an expanded form.
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*k% V. Conclusion

An expression for the solution to the relative motion

problem has been found. Although this solution is limited

to small eccentricities (the error is approximately es), it

has wide applications. It could be applied to traffic

management around the space station, Shuttle activities, or

any other application that utilizes orbits of small

eccentricities.

These equations of motion are an improvement over

previous methods. They are not limited to body A being in a

circular orbit as in some previous studies.. The results are

valid even at very close distances, which is a weakness of

the methods based on subtracting the two position vectors.

This analysis also has the advantage of being able to

calculate the necessary changes in velocity for rendezvous.

If we recall the basic solution to the equation of motion

x t) = 0(t,O) x + x (5.1)

The values of 5(t,O), x , and x have previously been found.

For the rendezvous problem, the initial and final times are

known. Also, the initial position is known, and the final

position is simply zero for the three different directions.

The only values that are not known are the initial and

final velocities. This results in a system of six
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equations and six unknowns. These are not difficult to

solve since all the other values are constants.

One difficulty in using this solution occurs when the

desired initial time is not at perigee, but at some time, t
0

This problem can be overcome by using the fact that

t,'O) = 58(t,t oa )  toO ') (5.2)

Finding the required solution, therefore, requires solving

Eq (5.2).

There are two limitations to this solution. The first

is that the relative distances between the two bodies must

be small. The second limitation is that the solution is for

small eccentricities. Equations for greater eccentricities

can be found using the same approach as this thesis. This

could be done with the same computer code, finding the

dependence on higher orders of eccentricity.

Utilization of these equations yield themselves best to

computer analysis since they are relatively lengthy

expressions. The equations being somewhat unwieldy are only

a minor inconvenience. One must remember, however, that the

equations are in canonical units.
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Appendix A: Explanation of Computer Code

Introduction

This appendix is meant to describe the code that was

used for this thesis. Hopefully, this will make it easier

to understand the numerical processes used.

Computer Code

The main programs were relatively simple. Their

purpose was to initialize some of the parameters, mainly

eccentricity, and call the numerical integrator. There were

actually three main programs. The first integrated the i

matrix over one orbit and its output was just t(T,O). The

second integrated the F matrix over one period and its

output was the values of the F matrix for fifty evenly

spaced time intervals over one period. The last integrated

F1 over one period and the output was fifty evenly spaced

values of F-1 f(t), where +(t) is the forcing function.

The numeric integrator that was used was Haming. It is

a fourth order predictor-corrector capable of integrating

systems of first order differential equations. Using it

entails forming a subroutine called "rhs," where rhs

calculates the right hand side of the equations of motion.



The position of body A was necessary in the subroutine

rhs, so it was calculated using a Newton-Raphson method to

find Kepler's equation.

The fourier coefficients were found using the approach

defined in chapter 2.



Appendix B: Data From Harmonic Analyses

Table B.1
Fourier Coefficients for F(1,2)

e c c c c
0 1 2 9

.0000001 2.00000000 -.000000200 * *

.0000010 2.00000000 -.000002000 * *

.0000100 2.00000000 -.000020000 * *

.0001000 2.00000001 -.000200000 -.000000010 *

.0005000 2.00000025 -.001000000 -.000000250 *

.0008000 2.00000064 -.001600000 -. 000000640 *

.0010000 2.00000100 -.002000000 -.000001000 *

.0050000 2.00002500 -.009999906 -.000025000 -.000000094

.0080000 2.00006400 -. 015999616 -.000063997 -.000000384

.0100000 2.00010000 -.019999249 -. 000099994 -.000000750

.0200000 2.00040000 -.039994000 -. 000399894 -.000005998

.0300000 2.00090000 -. 059979751 -. 000899460 -.000020233
2

c 2+e

c = -2e + (3/4)e3I
2

C = -e
2

c= -(3/4)e 3

Table B.2
Fourier Coefficients for F(1,3)

e s s s s
1 2 9 

.0000001 .999999800 .000000010 * *

.0000010 .999998000 .000000100 * *

.0000100 .999980000 .000001000 * *

.0001000 .999800006 .000099980 .000000011 *

.0005000 .999000016 .000499500 .000000281 *

.0008000 .998400400 .000798720 .000000719 *

.0010000 .998000626 .000998000 .000001123 .000000001

.0050000 .990015719 .004950042 .000027844 .000000165

.0080000 .984040383 .007872176 .000070848 .000000672

.0100000 .980063246 .009800347 .000110251 .000001307

.0200000 .960255944 .019202878 .000432018 .000010239

.0300000 .940582466 .028210067 .000951858 .000033836

s = 1 - 2e + (5/8) e + (3/4)e3
I

s = e - 2e + (1/3)e
2

s = (9/8)e - 2.25 e
3

s = (4/3)e
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Table B.4
Fourier Coefficient for F(2,1)

e C c c c
0 i 2 3

.0000001 3.00000000 .00000060 * *

.0000010 3.00000000 .00000O0 * *

.0000100 3.00000000 .00006000 * *

.0001000 3.00000002 .00060000 .000000075 *

.0005000 3.00000038 .00300000 .000001875 .000000001

.0008000 3.00000096 .00480000 .000004800 .000000005

.0010000 3.00000150 .00600000 .000007500 .000000010

.0050000 3.00003750 .03000028 .000187500 .000001219

.0080000 3.00009600 .04800115 .000480004 .000004992

.0100000 3.00015001 .06000225 .000750010 .000009750

.0200000 3.00060018 .12001800 .003000160 .000077996

.0300000 3.00135091 .18006080 .006750811 .000263222

c = 3 + 1.5e
2

0

c = 6e + 2.25 ei

c = 7.5e2
2

c = 9.75e

Table B.5
Fourier Coefficients for F(2,2)

e s s s
1 2 *

.0000001 -. 000000100 * *

.0000010 -. 000001000 * *

.0000100 -. 000010000 - *

.0001000 -. 000100000 -. 000000010 *

.0005000 -. 000500000 -. 000000250 *

.0008000 -. 000800000 -. 000000640*

.0010000 -. 001000000 -. 000001000 -.000000001

.0050000 -.004999953 -.000025000 -. 000000141

.0080000 -. 007999808 -.000063997 -. 000000576

.0100000 -.009999620 -. 000099992 -.000001124

.0200000 -.019996997 -. 000399894 -.000008997

.0300000 -. 029989877 -. 000899461 -. 000030350

s= -e + .38e
2

S = -e
2

s = -1.125e
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Table B.7
Fourier Coefficient for F(2,4)

e ssss
o 1 2

.0000001 1.000000000 .000000150 * *

.0000010 1.000000000 .000001500 * *

.0000100 1.000000000 .000050000 * *

.0001000 .999999996 .000150000 .000000021 *

.0005000 .999999906 .000750000 .000000531 *

.0008000 .999999760 .001200000 .000001360 .000000002

.0010000 .999999625 .001499999 .000002125 .000000003

.0050000 .999990625 .007499885 .000053129 .000000370

.0080000 .999976000 .011999531 .000135993 .000001515

.0100000 .999962500 .014999084 .000212482 .000002958

.0200000 .999849996 .029992666 .000849711 .000023656

.0300000 .999662488 .044975252 .001911039 .000079808

s = 1- .375e2

s = 1.5e - es

s = 2.125e2

s = 2.96e3

Table B.8
Fourier Coefficient for F(3,1)

e c c c c
o0 0 -. 2 *

.0000001 -3.00000000 -. 000000300 * *

.0000010 -3.00000000 -. 000003000 * *

.0000100 -3.00000000 -. 000030000 - *

.0001000 -2.99999999 -.000300000 -. 000000030 *

.0005000 -2.99999963 -. 001500000 -. 000000750*

.0008000 -2.99999904 -.002400000 -. 000001920 -.000000002

.0010000 -2.99999850 -.002999998 -. 000003000 -. 000000003

.0050000 -2.99996250 -.014999766 -.000074998 -.000000422

.0080000 -2.99990400 -.023999040 -.000191990 -.000001728

.0100000 -2.99985000 -.029998124 -. 000299975 -.000003375

.0200000 -2.99939994 -.059984996 -. 001199600 -.000026989

.0300000 -2.99864970 -. 089949371 -.002697975 -. 000091037

c = -3 + 1.5e
2

0
c = -3e +1.875e3

c = -3e
2

c = -3.375e3
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FTable B. 10
Fourier Coefficient for F(3,4)

e s s ss
1 2 9 4

.0000001 -2.00000000 -.000000150 * *

.0000010 -2.00000000 -.000001500 * *

.0000100 -2.00000000 -. 000015000 * *

.0001000 -2.00000000 -.000150000 -. 000000015 *

.0005000 -1.99999986 -. 000750000 -.000000375 *

.0008000 -1.99999968 -. 001199999 -.000000960 *

.0010000 -1.99999950 -. 001499999 -. 000001500 -. 000000002

.0050000 -1.99998750 -. 007499865 -. 000037499 -. 000000208

.0080000 -1.99996800 -. 011999445 -. 000095993 -. 000000853

.0100000 -1.99995000 -. 014998917 -. 000149984 -.000001667

.0200000 -1.99980006 -. 029991334 -. 000599737 -. 000013326

.0300000 -1.99955033 -. 044970761 -. 001348672 -. 000044943

.
= -2 + .5e 2

s = -1.5e + 1.08e
2

s = -1.5e
2

a
s = -(5/3)e

4

Table B.11
Fourier Coefficient for F(4,2)

e C c C c
0 1 2 3

.0000001 -1.00000000 -. 000000100 * *

.0000010 -1.00000000 -. 000001000 * *

.0000100 -1.00000000 -. 000010000 * *

.0001000 -0.99999999 -. 000100000 -. 000000010 *

.0005000 -0.99999988 -. 000500000 -.000000250 *

.0008000 -0.99999968 -. 000800000 -. 000000640 *

.0010000 -0.99999950 -. 000999999 -. 000001000 -.000000001

.0050000 -0.99998750 -. 004999922 -. 000024999 -. 000000141

.0080000 -0.99996800 -. 007999680 -. 000063997 -. 000000576

.0100000 -0.99995000 -.009999376 -. 000099991 -. 000001125

.0200000 -0.99979998 -. 019995000 -. 000399866 -. 000008996

.0300000 -0.99954990 -.029983123 -. 000899325 -. 000030346

C = -1 + .5e
2

c = -e + .625e 3

2
c =-e

2

C = 1.125es
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Fui Table B. 12

Fourier Coefficient for F(4,3)
e s s s s

i 2 - 4

.0000001 -1.00000000 -. 000000100 * *

.0000010 -1.00000000 -.000001000 * *

.0000100 -1.00000000 -. 000010000 * *

.0001000 -0.99999999 -.000100000 -. 000000011 *

.0005000 -0.99999978 -.000500000 -. 000000281 *

.0006000 -0.99999944 -.000799999 -.000000720 *

.0010000 -0.99999913 -.000999999 -.000001125 -.000000001

.0050000 -0.99997813 -. 004999854 -. 000028124 -.000000167

.0080000 -0.99994400 -.007999403 -. 000071993 -. 000000683

.0100000 -0.99991250 -.009998833 -.000112484 -.000001333

.0200000 -0.99965001 -. 019990668 -. 000449741 -. 000010659

.0300000 -0.99921257 -.029968508 -. 001011191 -. 000035945

s = -1 + .875e
2

1

s = -e + (7/6)e3
2

s = -(9/8)e 
2

3

s = (4/3)e9

Table B.13
Fourier Coefficient for F(4,4)

e c c c ci 2 3

.0000001 -1.00000000 -.000000100 *

.0000010 -1.00000000 -.000001000 * *

.0000100 -1.00000000 -. 000010000 * *

.0001000 -1.00000000 -.000100000 -. 000000011 *

.0005000 -1.00000009 -. 000500000 -. 000000281 *

.0008000 -1.00000024 -. 000800000 -.000000720 *

.0010000 -1.00000037 -. 001000000 -.000001125 -. 000000001

.0050000 -1.00000938 -.005000020 -.000028125 -.000000167

.0080000 -1.00002400 -.008000085 -.000072000 -. 000000683

.0100000 -1.00003750 -.010000167 -. 000112499 -.000001333

.0200000 -1.00015005 -.020001334 -. 000449989 -. 000010665

.0300000 -1.00033776 -.030004506 -. 001012443 -. 000035990

c = -1 - (3/8)e
2

c = -e - (1/6)es
2

c= -(9/8)e2
9

c = -(4/3) e
4
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FTable B.15
Fourier Coefficient for F(5,6)

e s s2 s s

.0000001 .999999900 .000000050

.0000010 .999999000 .000000500 * *

.0000100 .999990000 .000005000 * *

.0001000 .999899999 .000049995 .000000004*

.0005000 .999499969 .000249875 .000000094 *

.0008000 .999199920 .000399680 .000000240 *

.0010000 .998999875 .000499500 .000000375 *

.0050000 .994996891 .002487479 .000009328 .000000041

.0080000 .991992064 .003967915 .000023807 .000000169

.0100000 .989987625 .004949835 .000037123 .000000330

.0200000 .979951001 .009798693 .000146967 .000002612

.0300000 .969890879 .014545635 .000327209 .000008724

s = 1 - e - (1/8)e 2 + (1/8)ea

s .e - .5e2 -. 165e3
2

s (3/8)e2 - (3/8)ea

s =(1/3) e

Table B.16
Fourier Coefficient for F(6,5)

a S S S S

1 2.0000001 -1.00000010 -. 000000100
.0000010 -1.00000100 -. 000001000 *
.0000100 -1.00001000 -. 000010000 - 0*
.0001000 -1.00010001 -. 000100010 -. 000000011*

.0005000 -1.00050016 -. 000500250 -. 000000281 *

.0008000 -1.00080040 -. 000800640 -. 000000721 *

.0010000 -1.00100063 -. 001001000 -. 000001126 -. 000000001

.0050000 -1.00501570 -. 005025042 -. 000028266 -.000000167

.0080000 -1.00804032 -. 008064172 -. 000072576 -.000000688

.0100000 -1.01006313 -.010100337 -.000113626 -. 000001347

.0200000 -1.02025511 -. 020402721 -. 000459011 -. 000010879

.0300000 -1.03057992 -. 030909281 -. 001042934 -.000037073

s -1 - e - (5/8)e2 - (5/8)ea
2

s -e - e - (1/3)e
2 23

s = -(9/8)e - (9/8)e

s, = (4 /3) e
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Table B.17
Fourier Coefficient for F(6,6)

e c c c c
1 2 9 4

.0000001 .999999900 .000000100 * *

.0000010 .999999000 .000001000 * *

.0000100 .999990000 .000010000 * *

.0001000 .999899999 .000099990 .000000011 *

.0005000 .999499969 .000499750 .000000281 *

.0010000 .998999875 .000899000 .000001124 .000000001

.0050000 .994996890 .004974959 .000027984 .000000166

.0080000 .991992064 .007935831 .000071421 .000000677

.0100000 .989987625 .009899670 .000111369 .000001320

.0200000 .979951001 .019597387 .000440901 .000010450

.0300000 .969890879 .029091271 .000981628 .000034895

c = 1 - e - (1/8)e 2 + (1/8)e

c e - e - (1/3)e
2

c (9/8)e2 + (9/8)es

c (4/3)e9
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Table B.20

Fourier Coefficient for y(4)

e s s s s
12 9

.0000001 2.00000000 .000000300*

.0000010 2.00000000 .000003000 *

.0000100 2.00000000 .000030000 * *

.0001000 1.99999997 .000300000 .000000042 *

.0005000 1.99999931 .001499999 .000001062 *

.0008000 1.99999824 .002399998 .000002720 .000000003

.0010000 1.99999725 .002999995 .000004250 .000000006

.0050000 1.99993125 .014999396 .000106245 .000000740

.0080000 1.99982400 .023997525 .000271968 .000003029

.0100000 1.99972501 .029995167 .000424921 .000005915

.0200000 1.99890012 .059961340 .001698743 .000047294

.0300000 1.99752558 .089869549 .003818637 .000159449

s= 2 - (11/4)e
2

s= 3e 4.825e9
2

s = (17/4)e

s= 5.92e3
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